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SIMULATION THEORY  
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Learning objective: 

• To learn random number generation. 
• Methods of simulation. 
• Monte Carlo method of simulation 
ou’ve already read basics of simulation now I will be taking up method 
f simulation, that is Random Number Generation 

andom Number Generation 

andom numbers or Pseudo-random numbers are often required for simulations 
erformed on parallel computers. The requirements for parallel random number 
enerators are more stringent than those for sequential random number generators. As 
ell as passing the usual sequential tests on each processor, a parallel random number 
enerator must give different, independent sequences on each processor. We consider 
he requirements for a good parallel random number generator, and discuss generators 
or the uniform and normal distributions. These generators can give very fast vector 
r parallel implementations. 

andom Numbers and Simulation 

n many fields of engineering and science, we use a computer to simulate natural 
henomena rather than experiment with the real system. Examples of such computer 
xperiments are simulation studies of physical processes like atomic collisions, 
imulation of queuing models in system engineering, sampling in applied statistics. 
lternatively, we simulate a mathematical model, which cannot be treated by 

nalytical methods. In all cases a simulation is a computer experiment to determine 
robabilities empirically. In these applications, random numbers are required to make 
hings realistic.  



Random number generation has also applications in cryptography, where the 
requirements on randomness may be even more stringent.  

Hence, we need a good source of random numbers. Since the validity of a simulation 
will heavily depend on the quality of such a source, its choice or construction will be 
fundamental importance. Tests have shown that many so-called random functions 
supplied with programs and computers are far away from being random.  

By generating random numbers, we understand producing a sequence of independent 
random numbers with a specified distribution. The fundamental problem is to 
generate random numbers with a uniform discrete distribution on {0,1,2,…,N} or 
more suitable on {0,1/N,2/N,…,1}, say. This is the distribution where each possible 
number is equally likely. For N large this distribution approximates the continuous 
uniform distribution U(0,1) on the unit interval. Other discrete and continuous 
distributions will be generated from transformations of the U(0,1) distribution.  

At first, scientists who needed random numbers would generate them by performing 
random experiments like rolling dice or dealing out cards. Later tables of thousands 
of random digits created with special machines for mechanically generating random 
numbers or taken from large data sets as census reports were published.  

With the introduction of computers, people began to search for efficient ways to 
obtain random numbers using arithmetic operations of a computer - an approach 
suggested by John von Neumann in the 1940's. Since the digital computer cannot 
generate random numbers, the idea is, for a given probability distribution, to develop 
an algorithm such that the numbers generated by this algorithm appear to be random 
with the specified distribution. Sequences generated in a deterministic way we call 
pseudo-random numbers. To simulate a discrete uniform distribution John von 
Neumann used the so-called middle square method, which is to take the square of the 
previous random number and to extract the middle digits.  

 

Example: If we generate 4-digit numbers starting from 3567 we obtain 7234 as the 
next number since the square of 3567 equals 12723489. Continuing in the same way 
the next number will be 3307.  

Of course, the sequence of numbers generated by this algorithm is not random but it 
appears to be. However, as computations show the middle square method is a poor 
source of random numbers.  

To summarize our discussion we need  

• Precise mathematical formulations of the concept of randomness  
• Detailed analysis of algorithms for generating pseudo-random numbers  
• Empirical tests of random number generators  



What is a random sequence? 

A sequence of real numbers between zero and one generated by a computer is called 
"pseudo-random" sequence if it behaves like a sequence of random numbers. So far 
this statement is satisfactory for practical purposes but what one needs is a 
quantitative definition of random behaviour.  

In practice we need a list of mathematical properties characterizing random sequences 
and tests to see whether a sequence of pseudo-random numbers yields satisfactory 
results or not. Loosely speaking, basic requirements on random sequences are that 
their elements are uniformly distributed and uncorrelated. The tests we can perform 
will be of theoretical and/or empirical nature.  

Some definitions 

D.H. Lehmer(1951) : "A random sequence is a vague notion embodying the idea of a 
sequence in which each term is unpredictable to the uninitiated and whose digits pass 
a certain number of tests, traditional with statisticians and depending somewhat on 
the uses to which the sequence is to be put."  

J.N. Franklin (1962): " A sequence (U0, U1,…) (note: with Ui taking values in the unit 
interval [0,1]) is random if it has every property that is shared by all infinite 
sequences of independent samples of random variables from the uniform 
distribution."  

Generating uniform random numbers  

Deterministic generators yield numbers in a fixed sequence such that the forgoing k 
numbers determine the next number. Since the set of numbers used by a computer is 
finite, the sequence will become periodic after a certain number of iterations.  

The general form of algorithms generating random numbers may be described by the 
following recursive procedure.  

Xn= f(Xn-1,Xn-2,..., Xn-k)  

with initial conditions X0, X1,...,Xk-1. Here f is supposed to be a mapping from 
{0,1,...,m-1}k into {0,1,...,m-1}. 

For most generators k=1 in which case the recursive relation simplifies to  

Xn= f(Xn-1)  

with a single initial value X0, the seed of the generator. Now f is a mapping from 
{0,1,...,m-1} into itself.  



In most cases the goal is to simulate the continuous uniform distribution U(0,1). 
Therefore the integers Xn are rescaled to  

Un= Xn/m.  

If m is large, the resulting granularity is negligible when simulating a continuous 
distribution.  

A good generator should be of a long period and resulting subsequences of pseudo-
random numbers should be uniform and uncorrelated. Finally, the algorithm should 
be efficient.  

Remark: You should note that initializing the generator with the same seed X0 
would give the same sequence of random numbers. Usually one uses the clock 
time to initialize the generator.  

Mathematicians have devised a variety of procedures to generate random numbers. 
With these procedures, random number generation can be done either manually or 
with the help of a computer. Also, several collections of random number tables are 
available. The most commonly used table contains uniformly distributed (or normally 
distributed) random numbers over the interval 0 to 1. To generate other types of 
random numbers which obey other distribution laws, we would require access to a 
computer. 

The simplest method for obtaining random events is coin tossing. This method can be 
used to obtain an ideal random number generator. Here, we show that logistic map is 
able to simulate the coin tossing method. Also, we describe a numerical 
implementation of the ideal uniform random number generator. Comparing to usual 
congruential random number generators, which are periodic, the logistic generator is 
infinite, aperiodic and not correlated.  

In modern science, random number generators have proven invaluable in simulating 
natural phenomena and in sampling data [1-2]. There are only a few methods for 
obtaining random numbers. For example, the simplest method is coin tossing, where 
the occurrence of heads or tails are random events. By virtue of the symmetry of the 
coin the events are equally probable. Hence they are called equally probable events. It 
is therefore considered that the probability of heads (tails) is equal to 1/2. 

Coin tossing : The coin tossing belongs to the category of mechanical methods 
which includes also: dices, cards, roulettes, urns with balls and other gambling 
equipments. The mechanical methods are not frequently used in science because 
of the low generation speed. The methods characterized by high generation speed 
are those, which are based on intrinsic random physical processes such as the 
electronic and radioactive noise. Because the sequence of numbers generated with 
mechanical and physical methods are not reproducible, these methods have a 
great disadvantage in numerical simulations. 



Analytical methods: Methods which are implemented in computer algorithms, 
eliminates the disadvantages of the manual and physical methods. These methods 
are characterized by high speed, low correlation of the numbers and 
reproducibility. The major drawback of these methods is the periodicity of the 
generated sequences. 

Middle square generators: The middle square method was proposed by J. von 
Neumann in the 1940's. Therefore these generators are also called von Neumann 
generators in the literature. The middle square method consists of taking the 
square of the previous random number and to extract the middle digits. This 
method gives rather poor results since generally sequences tend to get into a short 
periodic orbit. 

 

Example: If we generate 4-digit numbers starting from 3567 we obtain 7234 as the 
next number since the square of 3567 equals 12723489. Continuing in the same way 
the next number will be 3307. The resulting sequence enters already after 46 
iterations a periodic orbit:  

3567, 7234, 3307, 9362, 6470, 8609, 1148, 3179, 1060, 1236, 5276, 8361, 9063, 
1379, 9016, 2882, 3059, 3574, 7734, 8147, 3736, 9576, 6997, 9580, 7764, 2796, 
8176, 8469, 7239, 4031, 2489, 1951, 8064, 280, 784, 6146, 7733, 7992, 8720, 384, 
1474, 1726, 9790, 8441, 2504, 2700, 2900, 4100, 8100, 6100, 2100, 4100  

 

Linear congruential generators: The linear congruential generator (LCG) was 
proposed D.H. Lehmer in 1948. The form of the generator is 

Xn = (aXn-1 + c) mod m  

The linear congruential generator depends on four parameters 

parameter name range 

m the modulus {1,2,...} 

a the multiplier {0,1,...,m-1}

c the increment {0,1,...,m-1}

X0 the seed {0,1,...,m-1}

The operation mod m is called reduction modulo m and is a basic operation of 
modular arithmetic. Any integer x may be represented as 



x = floor(x/m)·m + x mod m  

where the floor function floor(t) is the greatest integer less than or equal to t. This 
equation may be taken as definition of the reduction modulo m.  

If c = 0 the generator is called multiplicative. For nonzero c the generator is called 
mixed.  

 

 

Monte Carlo Method of Simulation 

The Monte Carlo method owes its development to the two mathematicians, 
John Von Neumann and Stanislaw Ulam, during World War II. The principle 
behind this method of simulation is representative of the given system under 
analysis by a system described by some known probability distribution and 
then drawing random samples for probability distribution by means of 
random number. In case it is not possible to describe a system in terms of 
standard probability distribution such as normal, Poisson, exponential, 
gamma, etc., an empirical probability distribution can be constructed. 

The deterministic method of simulation cannot always be applied to complex 
real life situations due to inherently high cost and time values required so as to obtain 
any meaningful results from the simulated model. Since there are a large number of 
interactions between numerous variables, the system becomes too complicated to 
offer an effective simulation approach. In such cases where it is not feasible to use an 
expectation approach for simulating systems, Monte Carlo method of simulation is 
used. 

It can be usefully applied in cases where the system to be simulated has a 
large number of elements that exhibit chance (probability) in their behaviour. As 
already mentioned, the various types of probability distributions are used to represent 
the uncertainty of real-life situations in the model. Simulation is normally undertaken 
only with the help of a very high-speed data processing machine such as computer. 
The user of simulation technique must always bear in mind that the actual frequency 
or probability would approximate the theoretical value of probability only when the 
number of trials are very large i.e. when the simulation is repeated a large no. of 
times. This can easily be achieved with the help of a computer by generating random 
numbers. 

 

A random number table is presented here for the quick reference of the 
students. 



 

Random Number Table  

 

52  
37  
82  
69  
98  
96  
33  
50  
88  
90  
50  
27  
45  
81  
66  
74  
30  

06  
63  
57  
02  
94  
52  
69  
33  
32  
30  
48  
88  
14  
02  
83  
05  
34  

50  
28  
68  
36  
90  
62  
27  
50  
18  
36  
61  
21  
46  
01  
14  
82  
87  

88  
02  
28  
49  
36  
87  
21  
95  
50  
24  
18  
62  
32  
78  
74  
82  
01  

53  
74  
05  
71  
06  
49  
11  
13  
62  
69  
85  
69  
13  
82  
27  
93  
74 

30  
35  
94  
99  
78  
56  
60  
44  
57  
82  
23  
64  
49  
74  
76  
09  
11  

35  
90  
92  
94  
25  
57  
34  
30  
90  
01  
24  
00  
92  
42  
72  
28  
32 

32  
73  
41  
38  
73  
01  
09  
64  
34  
55  
84  
16  
98  
49  
00  
30  
23  

10 
24 
03 
32 
23 
59 
95 
34 
34 
51 
08 
48 
66 
97 
03 
96 
46 

00 
59 
09 
97 
69 
98 
93 
49 
51 
92 
92 
16 
84 
27 
64 
94 
17 

47 
03 
11 
10 
67 
23 
89 
62 
56 
74 
54 
31 
62 
37 
33 
33 
82 

84 
55 
25 
71 
34 
57 
50 
44 
95 
64 
16 
46 
54 
64 
61 
23 
01 

99 
29 
27 
75 
89 
78 
68 
64 
62 
30 
17 
12 
74 
45 
11 
52 
59 

17 
36 
72 
85 
31 
44 
30 
26 
09 
49 
13 
33 
89 
13 
37 
58 

37 
60 
79 
21 
85 
71 
48 
39 
31 
35 
12 
73 
41 
31 
97 
78 
94

66 
74 
90 
95 
29 
72 
17 
55 
15 
36 
80 
02 
86 
94 
59 
13 
25

07 
60 
77 
49 
76 
95 
51 
16 
14 
85 
59 
85 
40 
42 
52 
39 
73 

91 
85 
87 
90 
21 
90 
89 
29 
40 
85 
69 
68 
98 
99 
81 
06 
34

 

 
Following are the steps involved in Monte-Carlo simulation:- 
 
Step I.  
Obtain the frequency or probability of all the important variables from the historical 
sources. 
 
Step II.  
Convert the respective probabilities of the various variables into cumulative 
problems. 
 
Step III.  
Generate random numbers for each such variable. 
 
Step IV.  
Based on the cumulative probability distribution table obtained in Step II, obtain the 
interval (i.e.; the range) of the assigned random numbers. 
 
Step V.  
Simulate a series of experiments or trails. 
Remarks. Which random number to use? 



 The selection of specific random number is determined by establishing a 
systematic and thorough selection strategy before examining the list of digits given in 
the random number table. 
 
 In general, the practical life situations or systems are simulated by 
building, first a basic inherent model & subsequently relaxing some or all 
of the assumptions so as to obtain a more precise model representation. 
Thus model building for simulations is a stepwise process and the final 
model emerges only after a large number of successive refinements. 
 
 
 Application of Monte-Carlo Simulation: Monte-Carlo simulation can now 
easily be applied to an example of the bread-seller. Let us suppose that the demands 
per unit of the bread along with their respective probabilities are as follows: 

 
 

Days No. 
Demand 
(per unit) Probability 

1 
2 
3 
4 
5 
6 
7 

20 
21 
22 
23 
24 
25 
26 

0.10 
0.15 
0.25 
0.20 
0.10 
0.05 
0.15 

 
 
We can easily use a sequence of 2-digit random numbers of generating the demand 
based on the above information. By assigning two digit random numbers to each of 
the possible outcomes or daily demand, we have: 
 
 

(Per unit) 
Days No. Demand Probability 

Cumulative 
Probability Random Nos. 

1 
2 
3 
4 
5 
6 
7 

20 
21 
22 
23 
24 
25 
26 

0.10 
0.15 
0.25 
0.20 
0.10 
0.05 
0.15 

0.10 
0.25 
0.50 
0.70 
0.80 
0.85 
1.00 

00 to 09 
10 to 24 
25 to 49 
50 to 69 
70 to 79 
80 to 84 
85 to 99 

 
 
 The first entry in the random number table is 00 to 09. It means 
that there are 10 random numbers (00 to 09). Since each of the ten 
numbers has an even chance of appearing. The probability of each 



number = 1/10 or 0.10; a fact that is fully supported by the cumulative 
probability table. 
 Using the above procedure, by Monte Carlo method of simulation, 
demand for the required number of days can easily be determined using 
the random number table. 

 

Now I’ll take up few examples of random number to explain this & make 
its practical application clear. 

 

Example 1 

New Delhi Bakery House keeps stock of a popular brand of cake. 
Previous experience indicates the daily demand as given below: 

 

Table 1 

Daily demand Probability 

0 0.01 

15 0.15 

25 0.20 

35 0.50 

45 0.12 

50 0.02 

Consider the following sequence of random numbers: 
R. No. : 21, 27, 47, 54, 60, 39, 43, 91, 25, 20. 

Using this sequence, simulate the demand for the next 10 days. Find out the 
stock situation if the owner of the bakery house decides to make 30 cakes 
every day. Also estimate the daily average demand for the cakes on the basis 
of simulated data. 

Solution : 



Table 2 

Daily 
Demand 

Probability Cumulative 
probability 

Random Nos. 

0 0.01 0.01 00 

15 0.15 0.16 01 to 15 

25 0.20 0.36 16 to 35 

35 0.50 0.86 36 to 85 

45 0.12 0.96 86 to 95 

50 0.02 1.00 96 to 99 

 

Table 3 

Demand Random 
Numbers 

Next 
demand 

If he makes 30 cakes in a day 

Left out                Shortage 

1 21 25 5  

2 27 25 10  

3 47 35 5  

4 54 35 0  

5 60 35  5 

6 39 35  10 

7 43 35  15 

8 91 45  30 

9 25 25  25 

10 20 25  20 

Total  320  10 

Next demand is calculated on the basis of cumulative probability (e.g., 
random number 21 lies in the third item of cumulative probability, i.e., 0.36. 
Therefore, the next demand is 25. ) 

Similarly, we can calculate the next demand for others. 



Total demand = 320 

Average demand = Total demand / no. of days 

The daily average demand for the cakes = 320 / 10 = 32 cakes.  

 

Summary 

Hope you have understood the random number method of simulation. In 
next lesson we will study about the practical application of simulation. 

4
Simulation

Monte Carlo Simulation
Key element is randomness
• Assume that some inputs are random variables
• Modeling randomness by generating random 

variables from their probability distributions

Simulation Modeling Process
• Develop the basic model that “behaves like” the 

real problem, with a special consideration of the 
random or probabilistic input variables

• Conduct a series of computer runs (called trials) to 
learn the behavior of the simulation model

• Compute the summary (output) statistics and make 
inferences about the real problem
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5
Simulation

Monte Carlo Simulation
Since some inputs to the model are random, 
outputs from the model are random too.
Simulation process is similar to statistical 
inference process
• Statistics: start with a population, sampling from the 

population, and then based on sample information to 
infer population

• Simulation: start with a basic model to represent real 
problem, replicating the basic model, and then based 
on the replication results to help solve real problem

• The larger the number of trials (sample size), the more 
reliable will be the simulation result
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6
Simulation

Basic Model: Profit = f(demand)

Input:
Demand

Relationship:
function f

Output:
Profit

How simulation works:
Step 1: basic model development:  generate one possible 

random Demand and find the corresponding Profit
Step 2: basic model replication: generate many possible 

values of Demand and find corresponding Profits
Step 3: result summarization: calculate summarized 

statistics on the Profit such as average, min, max etc.

Example
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