
Unit 3 
GAME THEORY 
 
Lesson 30 
 
Learning Objective: 

• Analyze two person non-zero sum games. 

 

• Analyze games involving cooperation. 

 

 

Hello students, 

The well-defined rational policy in neoclassical economics -- maximization of reward -- 
is extended to zero-sum games but not to the more realistic category of non-constant sum 
games. 

 

"Solutions" to Non-constant Sum Games 
The maximin strategy is a "rational" solution to all two-person zero sum games. 
However, it is not a solution for non-constant sum games. The difficulty is that there are a 
number of different solution concepts for non-constant sum games, and no one is clearly 
the "right" answer in every case. The different solution concepts may overlap, though.  

We have already seen one possible solution concept for non-constant sum games: the 
dominant strategy equilibrium.  

Let's take another look at the example of the two mineral water companies. 

Two companies sell mineral water. Each company has a fixed cost of $5000 per period, 
regardless whether they sell anything or not. We will call the companies Perrier and 
Apollinaris, just to take two names at random. 



The two companies are competing for the same market and each firm must choose a high 
price ($2 per bottle) or a low price ($1 per bottle). Here are the rules of the game: 

1) At a price of $2, 5000 bottles can be sold for a total revenue of $10000. 

2) At a price of $1, 10000 bottles can be sold for a total revenue of $10000. 

3) If both companies charge the same price, they split the sales evenly between them. 

4) If one company charges a higher price, the company with the lower price sells the 
whole amount and the company with the higher price sells nothing. 

5) Payoffs are profits -- revenue minus the $5000 fixed cost. 

 

Here is the payoff table for these two companies 

 

Table 1  

  Perrier  

  Price=$1  Price=$2  

Price=$1 0,0  5000, -5000 
Apollinaris  

Price=$2 -5000, 5000 0,0  

 

We saw that the maximin solution was for each company to cut price to $1. That is also a 
dominant strategy equilibrium.  

It's easy to check that: Apollinaris can reason that either Perrier cuts to $1 or not. If they 
do, Apollinaris is better off cutting to 1 to avoid a loss of $5000. But if Perrier doesn't 
cut, Apollinaris can earn a profit of 5000 by cutting. And Perrier can reason in the same 
way, so cutting is a dominant strategy for each competitor. 

But this is, of course, a very simplified -- even unrealistic -- conception of price 
competition.  

 

Let's look at a more complicated, perhaps more realistic pricing example: 



Another Price Competition Example 

Following a long tradition in economics, we will think of two companies selling 
"widgets" at a price of one, two, or three dollars per widget. The payoffs are profits -- 
after allowing for costs of all kinds -- and are shown in Table 2. The general idea behind 
the example is that the company that charges a lower price will get more customers and 
thus, within limits, more profits than the high-price competitor. (This example follows 
one by Warren Nutter). 

Table 2  

  Acme Widgets  

  p=1  p=2  p=3  

p=1  0,0  50, -10 40,-20 

p=2  -10,50 20,20 90,10 
Widgeon 
Widgets  

p=3  -20, 40 10,90 50,50 

 

You can see that this is not a zero-sum game.  

Profits may add up to 100, 20, 40, or zero, depending on the strategies that the 
two competitors choose. Thus, the maximin solution does not apply.  

You can also see fairly easily that there is no dominant strategy equilibrium.  

Widgeon company can reason as follows: if Acme were to choose a price of 3, then 
Widgeon's best price is 2, but otherwise Widgeon's best price is 1 -- neither is dominant. 

 

Nash Equilibrium 

You will need another, broader concept of equilibrium if you are to do anything with this 
game. The concept you need is called the Nash Equilibrium, after Nobel Laureate (in 
economics) and mathematician John Nash. Nash, a student of Tucker's, contributed 
several key concepts to game theory around 1950.  

The Nash Equilibrium conception was one of these, and is probably the most widely used 
"solution concept" in game theory. 

 



If there is a set of strategies with the property that no player can benefit by changing her 
strategy while the other players keep their strategies unchanged, then that set of strategies 
and the corresponding payoffs constitute the Nash Equilibrium. 

 

Let's apply that definition to the widget-selling game.  

First, for example, you can see that the strategy pair p=3 for each player (bottom right) is 
not a Nash-equilibrium. From that pair, each competitor can benefit by cutting price, if 
the other player keeps her strategy unchanged. Or consider the bottom middle -- Widgeon 
charges $3 but Acme charges $2. From that pair, Widgeon benefits by cutting to $1. In 
this way, you can eliminate any strategy pair except the upper left, at which both 
competitors charge $1. 

You will see that the Nash equilibrium in the widget-selling game is a low-price, zero-
profit equilibrium. Many economists believe that result is descriptive of real, highly 
competitive markets -- although there is, of course, a great deal about this example that is 
still "unrealistic." 

 

Let's go back and take a look at that dominant-strategy equilibrium in Table 1 of this 
lecture. You will see that it, too, is a Nash-Equilibrium. Check it out!  

Also, look again at the dominant-strategy equilibrium in the Prisoners' Dilemma. It, too, 
is a Nash-Equilibrium. In fact, any dominant strategy equilibrium is also a Nash 
Equilibrium. The Nash equilibrium is an extension of the concepts of dominant strategy 
equilibrium and of the maximin solution for zero-sum games. 

It would be nice to say that that answers all our questions.  

But, of course, it does not…….  

Here is just the first of the questions it does not answer:  

 

¾ Could there be more than one Nash-Equilibrium in the same game?  

 

¾ And what if there were more than one? 

 



This leads us to a new concept 

Games with Multiple Nash Equilibria 
Here is another example to try the Nash Equilibrium approach on…..  

Two radio stations (WIRD and KOOL) have to choose formats for their 
broadcasts. There are three possible formats: Country-Western (CW), 
Industrial Music (IM) or all-news (AN). The audiences for the three formats 
are 50%, 30%, and 20%, respectively. If they choose the same formats they 
will split the audience for that format equally, while if they choose different 
formats, each will get the total audience for that format. Audience shares are 
proportionate to payoffs. The payoffs (audience shares) are in Table 3.  

 
 

Table 3  
  KOOL  

  CW IM  AN  

CW 25,25 50,30 50,20 

IM 30,50 15,15 30,20 WIRD 

AN 20,50 20,30 10,10 

 

You should be able to verify that this is a non-constant sum game, and that 
there are no dominant strategy equilibria.  

If you find the Nash Equilibria by elimination, you will find that there are two 
of them -- the upper middle cell and the middle-left one, in both of which one 
station chooses CW and gets a 50 market share and the other chooses IM and 
gets 30. But it doesn't matter which station chooses which format.  

It may seem that this makes little difference, since  

• the total payoff is the same in both cases, namely 80  
• both are efficient, in that there is no larger total payoff than 80 

 
There are multiple Nash Equilibria in which neither of these things is so, as you will see 
in some later examples. But even when they are both true, the multiplication of equilibria 
creates a danger. The danger is that both stations will choose the more profitable CW 
format -- and split the market, getting only 25 each! Actually, there is an even worse 



danger that each station might assume that the other station will choose CW, and each 
choose IM, splitting that market and leaving each with a market share of just 15.  

More generally, the problem for the players is to figure out which equilibrium 
will in fact occur. In other words, a game of this kind raises a "coordination 
problem:"  

How can the two stations coordinate their choices of strategies and 
avoid the danger of a mutually inferior outcome such as splitting the market?  

Games that present coordination problems are sometimes called coordination 
games.  

From a mathematical point of view, this multiplicity of equilibria is a 
problem. For a "solution" to a "problem," we want one answer, not a family of 
answers. And many economists would also regard it as a problem that has to 
be solved by some restriction of the assumptions that would rule out the 
multiple equilibria. 

But, from a social scientific point of view, there is another interpretation. 
Many social scientists (myself included) believe that coordination problems 
are quite real and important aspects of human social life.  

From this point of view, we might say that multiple Nash equilibria provide us 
with a possible "explanation" of coordination problems. That would be an 
important positive finding, not a problem!  

 

Any bit of information that all participants in a coordination game would 
have, that could enable them all to focus on the same equilibrium. 

In determining a national boundary, for example, the highest mountain 
between the two countries would be an obvious enough landmark that both 
might focus on setting the boundary there -- even if the mountain were not 
very high at all.  

Another source of a hint that could solve a coordination game is social 
convention.  

Here is a game in which social convention could be quite important. That 
game has a long name: "Which Side of the Road to Drive On?"  

In Britain, you know, people drive on the left side of the road; in the US they 
drive on the right.  



In abstract, how do we choose which side to drive on?  

• There are two strategies: drive on the left side and drive on the 
right side.  

• There are two possible outcomes: the two cars pass one another 
without incident or they crash.  

• Arbitrarily assign a value of one each to passing without 
problems and of -10 each to a crash.  

 

Here is the payoff table:  

 
 

Table 4  
  Mercedes  

  L  R  

L 1,1  -10,-10 
Buick 

R -10,-10 1,1  

 

Verify that LL and RR are both Nash equilibria. But, if we do not know which 
side to choose, there is some danger that we will choose LR or RL at random 
and crash.  

How can we know which side to choose?  

The answer is, of course, that for this coordination game we rely on social 
convention. Conversely, we know that in this game, social convention is very 
powerful and persistent, and no less so in the country where the solution is LL 
than in the country where it is RR.  

 

Next, we move on to what is called as cooperative games. 

Cooperative Games 
Games in which the participants cannot make commitments to coordinate their strategies 
are "non-cooperative games." The solution to a "non-cooperative game" is a "non-
cooperative solution."  



In a non-cooperative game, the rational person's problem is to answer the question "What 
is the rational choice of a strategy when other players will try to choose their best 
responses to my strategy?" 

Conversely, games in which the participants can make commitments to coordinate their 
strategies are "cooperative games," and the solution to a "cooperative game" is a 
"cooperative solution." In a cooperative game, the rational person's problem is to answer 
the question, "What strategy choice will lead to the best outcome for all of us in this 
game?"  

If that seems excessively idealistic, you should keep in mind that cooperative games 
typically allow for "side payments," that is, bribes and quid pro quo arrangements so that 
every one is (might be?) better off.  

Thus the rational person's problem in the cooperative game is actually a little more 
complicated than that. The rational person must ask not only "What strategy choice will 
lead to the best outcome for all of us in this game?" but also "How large a bribe may I 
reasonably expect for choosing it?"  

  

A Basic Cooperative Game 

Cooperative games are particularly important in economics. Here is an example that may 
illustrate the reason why.  

• Suppose that Joey has a bicycle.  

 

• Joey would rather have a game machine than a bicycle, and he could buy a 
game machine for $80, but Joey doesn't have any money. We express this 
by saying that Joey values his bicycle at $80.  

 

• Mikey has $100 and no bicycle, and would rather have a bicycle than 
anything else he can buy for $100. We express this by saying that Mikey 
values a bicycle at $100. 

 

• The strategies available to Joey and Mikey are to give or to keep. That is, 
Joey can give his bicycle to Mikey or keep it, and Mikey can give some of 
this money to Joey or keep it all. 



• It is suggested that Mikey give Joey $90 and that Joey give Mikey the 
bicycle. This is what we call "exchange."  

Here are the payoffs: 

Table 5  

  Joey  

  give  keep  

give 110, 90 10, 170 
Mikey 

keep 200, 0 100, 80 

 

 

EXPLANATION:  

• At the upper left, Mikey has a bicycle he values at $100, plus $10 extra, 
while Joey has a game machine he values at $80, plus an extra $10.  

 

• At the lower left, Mikey has the bicycle he values at $100, plus $100 
extra. At the upper left, Joey has a game machine and a bike, each of 
which he values at $80, plus $10 extra, and Mikey is left with only $10.  

 

• At the lower right, they simply have what they begin with -- Mikey $100 
and Joey a bike. 

If we think of this as a non-cooperative game, it is much like a Prisoners' Dilemma. To 
keep is a dominant strategy and keep, keep is a dominant strategy equilibrium. However, 
give, give makes both better off. Being children, they may distrust one another and fail to 
make the exchange that will make them better off. But market societies have a range of 
institutions that allow adults to commit themselves to mutually beneficial transactions.  

Thus, we would expect a cooperative solution, and we suspect that it would be the one in 
the upper left. But what cooperative "solution concept" may we use?  

  



Pareto Optimum 

We have observed that both participants in the bike-selling game are better off if they 
make the transaction. This is the basis for one solution concept in cooperative games. 

First, we define a criterion to rank outcomes from the point of view of the group of 
players as a whole. We can say that one outcome is better than another (upper left better 
than lower right, e.g.) if at least one person is better off and no one is worse off. This is 
called the Pareto criterion, after the Italian economist and mechanical engineer, Vilfredo 
Pareto.  

If an outcome (such as the upper left) cannot be improved upon, in that sense -- in other 
words, if no-one can be made better off without making somebody else worse off -- then 
we say that the outcome is Pareto Optimal, that is, Optimal (cannot be improved upon) in 
terms of the Pareto Criterion.  

If there were a unique Pareto optimal outcome for a cooperative game, that would seem 
to be a good solution concept. The problem is that there isn't -- in general, there are 
infinitely many Pareto Optima for any fairly complicated economic "game."  

 

In the bike-selling example, every cell in the table except the lower right is Pareto-
optimal, and in fact any price between $80 and $100 would give yet another of the 
(infinitely many) Pareto-Optimal outcomes to this game. All the same, this was the 
solution criterion that von Neumann and Morgenstern used, and the set of all Pareto-
Optimal outcomes is called the "solution set." 

 

  

Alternative Solution Concepts 

If we are to improve on this concept, we need to solve two problems.  

• One is to narrow down the range of possible solutions to a particular price 
or, more generally, distribution of the benefits. This is called "the 
bargaining problem."  

• Second, we still need to generalize cooperative games to more than two 
participants.  

There are a number of concepts, including several with interesting results; but here 
attention will be limited to one. It is the Core, and it builds on the Pareto Optimal solution 
set, allowing these two problems to solve one another via "competition." 



An Information Technology Example 
Revisited 
 

When we looked at "Choosing an Information Technology," one of the two introductory 
examples, we came to the conclusion that it is more complex than the Prisoners' Dilemma 
in several ways. Unlike the Prisoners' Dilemma, it is a cooperative game, not a non-
cooperative game. Now let's look at it from that point of view.  

When the information system user and supplier get together and work out a deal for an 
information system, they are forming a coalition in game theory terms. (Here we have 
been influenced more by political science than economics, it seems!)  

• The first decision will be whether to join the coalition or not. In this 
example, that's a pretty easy decision. Going it alone, neither the user nor 
the supplier can be sure of a payoff more than 0. By forming a coalition, 
both choosing the advanced system, they can get a total payoff of 40 
between them.  

• The next question is: how will they divide that 40 between them? How 
much will the user pay for the system?  

We need a little more detail about this game before we can go on. The payoff table above 
was net of the payment. It was derived from the following gross payoffs: 

 

Table 6  

  User  

  Advanced Proven 

Advanced -50,90  0,0  
Supplier 

Proven  0,0  -30,40 

 

The gross payoffs to the supplier are negative, because the production of the information 
system is a cost item to the supplier, and the benefits to the supplier are the payment they 
get from the user, minus that cost.  



For Table 6, I assumed a payment of 70 for an advanced or 35 for a proven system. But 
those are not the only possibilities in either case. How much will be paid? Here are a 
couple of key points to move us toward an answer: 

• The net benefits to the two participants cannot add up to more than 40, since that 
is the largest net benefit they can produce by working together.  

• Since each participant can break even by going it alone, neither will accept a net 
less than zero.  

 

Using that information, we get Figure A-1: 

 

Figure A-1 

The diagram shows the net payoff to the supplier on the horizontal axis and the net payoff 
to the user on the horizontal axis. Since the supplier will not agree to a payment that 
leaves her with a loss, only the solid green diagonal line -- corresponding to total payoffs 
of 40 to the two participants -- will be possible payoffs. But any point on that solid line 
will satisfy the two points above. In that sense, all the points on the line are possible 
"solutions" to the cooperative game, and von Neumann and Morgenstern called it the 
"solution set." 

But this "solution set" covers a multitude of sins. How are we to narrow down the range 
of possible answers? There are several possibilities. The range of possible payments 
might be influenced, and narrowed, by: 

• Competitive pressures from other potential suppliers and users,  
• Perceived fairness,  
• Bargaining.  



There are game-theoretic approaches based on all these approaches, and on combinations 
of them. Unfortunately, this leads to several different concepts of "solutions" of 
cooperative games, and they may conflict. One of them -- the core, based on competitive 
pressures -- will be explored in these pages. We will have to leave the others for another 
time. 

There is one more complication to consider, when we look at the longer run. What if the 
supplier does not continue to support the information system chosen? What if the supplier 
invests to support the system in the long run, and the user doesn't continue to use it? In 
other words, what if the commitments the participants make are limited by opportunism? 

 
So, now let us summarize today’s discussion: 
 
 
 
Summary 
We have discussed about: 
 

¾ Several Examples  
¾ Solution to Non-constant sum games 
¾ Nash equilibrium  
¾ Multiple Nash equilibrium 
¾ Cooperative game 
¾ Pareto Optimum.  

 
 

http://william-king.www.drexel.edu/top/eco/game/core.html
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