
Unit 1 
 
Lesson 13: Sensitivity Analysis 

Learning Objectives 
 
 

• What is Sensitivity Analysis ? 
• Role of sensitivity analysis in Linear programming. 

 

Finding the optimal solution to a linear programming model is important, but it is 
not the only information available. There is a tremendous amount of sensitivity 
information, or information about what happens when data values are changed.  

Recall that in order to formulate a problem as a linear program, you had to invoke 
a certainty assumption: you had to know what value the data took on, and you 
have made decisions based on that data. Often this assumption is somewhat 
dubious: the data might be unknown, or guessed at, or otherwise inaccurate. 
How can you determine the effect on the optimal decisions if the values change? 
Clearly some numbers in the data are more important than others. Can you find 
the ``important'' numbers?  

Can you determine the effect of misestimation?  

Linear programming offers extensive capability for addressing these questions. In 
this lecture I will show you how data changes show up in the optimal table. I am 
giving you two examples of how to interpret Solver's extensive output.  

Sensitivity Analysis 

Suppose you solve a linear program ``by hand'' ending up with an optimal table 
(or tableau to use the technical term). You know what an optimal tableau looks 
like: it has all non-negative values in Row 0 (which we will often refer to as the 
cost row), all non-negative right-hand-side values, and a basis (identity matrix) 
embedded. To determine the effect of a change in the data, I will try to determine 
how that change effected the final tableau, and try to reform the final tableau 
accordingly.  

 

 

 



 

 

 

Cost Changes 

   

The first change I will consider is changing a cost value by in the original 
problem. I am  given the original problem and an optimal tableau. If you had done 
exactly the same calculations beginning with the modified problem, you would 
have had the same final tableau except that the corresponding cost entry would 
be lower (this is because you never do anything except add or subtract scalar 
multiples of Rows 1 through m to other rows; you never add or subtract Row 0 to 
other rows). For example, take the problem 

Example 1 

Max 3x+2y 
Subject to 
   x+y <= 4 
   2x+y <= 6 
   x,y >= 0 

The optimal tableau to this problem (after adding and as slacks to place in 
standard form) is:  

 

Suppose the cost for x is changed to in the original formulation, from its 
previous value 3. After doing the same operations as before, that is the same 
pivots, you would end up with the tableau:  

 



Now this is not the optimal tableau: it does not have a correct basis (look at the 
column of x). But you can make it correct in form while keeping the same basic 
variables by adding times the last row to the cost row. This gives the tableau:  

 

Note that this tableau has the same basic variables and the same variable values 
(except for z) that your previous solution had. 

 Does this represent an optimal solution? It does only if the cost row is all non-
negative. This is true only if  

 

 

which holds for . For any in that range, our previous basis (and 

variable values) is optimal. The objective changes to .  

In the previous example, we changed the cost of a basic variable. Let's go 
through another example. This example will show what happens when the cost of 
a nonbasic variable changes.  

Example2 

Max 3x+2y + 2.5w 
Subject to 
   x+y +2w <= 4 
   2x+y +2w <= 6 
   x,y,w >= 0 

Here, the optimal tableau is :  

 

Now suppose I change the cost on w from 2.5 to in the formulation. 
Doing the same calculations as before will result in the tableau:  



 

In this case,I already have a valid tableau. This will represent an optimal solution 

if , so . As long as the objective coefficient of w is no more 
than 2.5+1.5=4 in the original formulation, my solution of x=2,y=2 will remain 
optimal.  

The value in the cost row in the simplex tableau is called the reduced cost. It is 
zero for a basic variable and, in an optimal tableau, it is non-negative for all other 
variables (for a maximization problem).  

Summary: Changing objective function values in the original formulation will 
result in a changed cost row in the final tableau. It might be necessary to add a 
multiple of a row to the cost row to keep the form of the basis. The resulting 
analysis depends only on keeping the cost row non-negative.  

 
 

Right Hand Side Changes 

  For these types of changes, concentrate on maximization problems with all 
constraints. Other cases are handled similarly.  

Take the following problem:  

Example 3 

   

The optimal tableau, after adding slacks and is  



 

Now suppose instead of 12 units in the first constraint, I  only had 11. This is 
equivalent to forcing to take on value 1. Writing the constraints in the optimal 
tableau long-hand, we get  

 

 

 

If I force to 1 and keep at zero (as a nonbasic variable should be), the new 
solution would be z = 21, y=1, x=4. Since all variables are nonnegative, this is the 
optimal solution.  

In general, changing the amount of the right-hand-side from 12 to in the 
first constraint changes the tableau to:  

 

This represents an optimal tableau as long as the righthand side is all non-
negative. In other words, I need between -2 and 3 in order for the basis not to 

change. For any in that range, the optimal objective will be . For 
example, with equals 2, the new objective is 24 with y=4 and x=1.  

Similarly, if I change the right-hand-side of the second constraint from 5 to 

in the original formulation, we get an objective of in the final tableau, as 

long as .  

Perhaps the most important concept in sensitivity analysis is the shadow price 
of a constraint: If the RHS of Constraint i changes by in the original formulation, 

the optimal objective value changes by . The shadow price can be found in 
the optimal tableau. It is the reduced cost of the slack variable . So it is found in 
the cost row (Row 0) in the column corresponding the slack for Constraint i. In 



this case, (found in Row 0 in the column of ) and (found in Row 0 

in the column of ). The value is really the marginal value of the resource 
associated with Constraint i. For example, the optimal objective value (currently 
22) would increase by 2 if I could increase the RHS of the second constraint by 

. In other words, the marginal value of that resource is 2, i.e. you are willing 
to pay up to 2 to increase the right hand side of the second constraint by 1 unit. 
You may have noticed the similarity of interpretation between shadow prices in 
linear programming and Lagrange multipliers in constrained optimization. Is this 
just a coincidence? Of course not. This parallel should not be too surprising 
since, after all, linear programming is a special case of constrained optimization. 
To derive this equivalence (between shadow prices and optimal Lagrange 
multipiers), one could write the KKT conditions for the linear program...but we will 
skip this in this course!  

In summary, changing the right-hand-side of a constraint is identical to setting the 
corresponding slack variable to some value. This gives you the shadow price 
(which equals the reduced cost for the corresponding slack) and the ranges.  

 

New Variable 

The shadow prices can be used to determine the effect of a new variable (like a 
new product in a production linear program). Suppose that, in formulation (1.1), a 
new variable w has coefficient 4 in the first constraint and 3 in the second. 

 What objective coefficient must it have to be considered for adding to the basis?  

If you look at making w positive, then this is equivalent to decreasing the right 
hand side of the first constraint by 4w and the right hand side of the second 
constraint by 3w in the original formulation. We obtain the same effect by making 

and . The overall effect of this is to decrease the objective by 

. The objective value must be 
sufficient to offset this, so the objective coefficient must be more than 10 (exactly 
10 would lead to an alternative optimal solution with no change in objective).  

 
 
 
 
 



Example 4  

maximise  
3x1 + 7x2 + 4x3 + 9x4 
subject to  
x1 + 4x2 + 5x3 + 8x4 <= 9    (1)  
x1 + 2x2 + 6x3 + 4x4 <= 7    (2) 
xi >= 0 i=1,2,3,4  

Solve this linear program using the simplex method.  

• what are the values of the variables in the optimal solution?  
• what is the optimal objective function value?  
• which constraints are tight?  
• what would you estimate the objective function would change to if:  

o we change the right-hand side of constraint (1) to 10  
o we change the right-hand side of constraint (2) to 6.5  
o we add to the linear program the constraint x3 = 0.7  
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