# Unit 1 <br> Lesson 12: A Presentation on Duality Theorem 

 1
## Duality Theory

- The duality theory deals with the relationship between original and dual LP problems.
- It is very important in optimization and other areas of applied mathematics.


## Duality Theory

■ For the Simplex Method so far, we have only considered maximisation problems, with $\leq$ functional constraints.

- We will now consider minimisation problems with $\geq$ functional constraints.
■ We still require all variables to be non-negative.
$\square$ We shall use Duality Theory for this purpose.

3

## Duality Theory

Consider the following LP problem. Observe that here we use min rather than max, and $\geq$ rather than $\leq$ for the functional constraints.

$$
\begin{aligned}
& \underline{\min } C=5 x_{1}+3 x_{2} \\
& \text { s.t. } \quad x_{1}+3 x_{2} \geq 8 \\
& 2 x_{1}-4 x_{2} \geq 7 \\
& \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Since these "violate" the format we used so far, we cannot use our Simplex Method to solve this problem directly. We shall solve it indirectly via Duality Theory.

## Duality Theory

Dual Problem: Given a (min, $\geq$ ) problem, we create a (max, $\leq$ ) problem by the following transformations:
$\square$ min $\rightarrow$ max
$\square \geq \boldsymbol{\rightarrow} \leq$ in the functional constraints
$\square$ RHS $\rightarrow$ Objective function coefficients
$\square$ Objective function coefficients $\rightarrow$ RHS

- Constraint coefficients are transposed

Transpose: Interchange rows and columns of a matrix, table, etc.

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \Rightarrow\left|\begin{array}{ll}
a & d \\
b & e
\end{array}\right|
$$

5
Duality Theory

Constructing the dual problem of the primal Problem P (Primal) problem.

$$
\min C=5 x_{1}+3 x_{2}
$$

$$
\text { s.t. } \quad x_{1}+3 x_{2} \geq 8
$$

| Problem D (Dual) |  |
| :--- | ---: |
| max $P=8 y_{1}+7 y_{2}$ |  |
| s.t. | $y_{1}+2 y_{2} \leq 5$ |
|  | $3 y_{1}-4 y_{2} \leq 3$ |
|  | $y_{1}, y_{2} \geq 0$ |



## Duality Theory

Minimisation Problem in canonical form:

$$
\min C=b_{1} x_{1}+b_{2} x_{2}+\Lambda+b_{m} x_{m}
$$

s.t.

$$
a_{11} x_{1}+a_{12} x_{2}+\Lambda+a_{1 m} x_{m} \geq c_{1}
$$

$m$ variables
$n$ functional constraints

$$
\begin{gathered}
a_{n 1} x_{1}+a_{n 2} x_{2}+\Lambda+a_{n m} x_{m} \geq c_{n} \\
x_{1}, x_{2}, \Lambda, x_{m} \geq 0
\end{gathered}
$$

7

## Duality Theory

Dual Problem:

$$
\max \quad P=c_{1} y_{1}+c_{2} y_{2}+\Lambda+c_{n} y_{n}
$$

## s.t.

$n$ variables

$$
\begin{aligned}
& a_{11} y_{1}+a_{21} y_{2}+\Lambda+a_{n 1} y_{n} \leq b_{1} \\
& a_{12} y_{1}+a_{22} y_{2}+\Lambda+a_{n 2} y_{n} \leq b_{2}
\end{aligned}
$$

$m$ functional
constraints

$$
\begin{gathered}
a_{1 m} y_{1}+a_{2 m} y_{2}+\Lambda+a_{n m} y_{n} \leq b_{m} \\
y_{1}, y_{2}, \Lambda, y_{n} \geq 0
\end{gathered}
$$

## Duality Theory

Example 3.2 (see also Ex.1, Section 5-5, B \& Z)
Construct the dual of the following problem:
Minimise: $C=2 x_{1}+8 x_{2}+3 x_{3}$

$$
\begin{array}{ll}
\text { s.t. } & x_{1}+2 x_{2}+4 x_{3} \geq 6 \\
& x_{1}+3 x_{2}-5 x_{3} \geq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Dual Problem: Maximize $P=6 y_{1}+8 y_{2}$

$$
\begin{array}{lc}
\text { s.t. } & y_{1}+y_{2} \leq 2 \\
& 2 y_{1}+3 y_{2} \leq 8 \\
& 4 y_{1}-5 y_{2} \leq 3 \\
& y_{1}, y_{2} \geq 0
\end{array}
$$

## Duality Theorem

- A LP problem has an optimal solution if and only if its dual has an optimal solution.
- If an optimal solution exists, then the optimal values of the objective functions of the two problems are the same. That is,

$$
\operatorname{Max} \mathrm{P}=\operatorname{Min} \mathrm{C}
$$

Good News: This theorem is constructive in that it gives a simple recipe for obtaining an optimal solution for the dual problem from the final simplex tableau of the original problem and vice versa.

# Duality Theory 

## Recipe

How can we obtain an optimal solution to a ( $\min , \geq$ ) problem from the final simplex tableau of its dual (max, $\leq$ ) problem ?
$\square$ Solve the dual (max, $\leq$ ) problem using the Simplex Method.

- Record the entries of the slack variables in the last row of the final simplex tableau.
$\square$ These coefficients are equal to the optimal values of the respective dual variables.


## Duality Theory

Example 3.3 (see also Ex.2, Section 5-5, B \& Z)
Solve the following problem by first constructing its dual, and then using the simplex method on the dual.

Minimise: $C=x_{1}+2 x_{2}$
subject to:

$$
\begin{aligned}
& x_{1}+0.5 x_{2} \geq 2 \\
& x_{1}-\quad x_{2} \geq 2 \\
& x_{1}+\quad x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

## Duality Theory

The dual problem is as follows:
Maximize: $P=2 y_{1}+2 y_{2}+3 y_{3}$
subject to:

$$
\begin{gathered}
y_{1}+y_{2}+y_{3} \leq 1 \\
0.5 y_{1}-y_{2}+y_{3} \leq 2 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

Adding slack variables:
Maximize: $P=2 y_{1}+2 y_{2}+3 y_{3}$
subject to:

$$
\begin{array}{rr}
y_{1}+y_{2}+y_{3}+s_{1} & =1 \\
0.5 y_{1}-y_{2}+y_{3}+ & s_{2}=2 \\
y_{1}, y_{2}, y_{3}, s_{1}, s_{2} \geq 0 &
\end{array}
$$

Initial Simplex Tableau

| BV | y1 | y2 | y3 | s1 | s2 | P |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s1 | 1 | 1 | (1) | 1 | 0 | 0 |  | $\mathrm{R} 1 \rightarrow$ |
| s2 | 1/2 | -1 | 1 | 0 | 1 | 0 |  | $\mathrm{R} 2-\mathrm{R} 1 \rightarrow \mathrm{R} 1$ |
| P | -2 | -2 | -3 | 0 | 0 | 1 |  | R3 + $\mathrm{R} 1 \rightarrow$ |


| BV | y 1 | y 2 | y 3 | s 1 | s2 | P RHS |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| y3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| s2 | $-1 / 2$ | -2 | 0 | -1 | 1 | 0 | 1 |
| P | 1 | 1 | 0 | 3 | 0 | 1 | 3 |



Recipe: optimal solution of the ( $\mathrm{min}, \geq$ ) problem $=$ entries of slack variables in the last row of the final tableau of the dual (max, $\leq$ ) problem.

## Duality Theory

Report:
The optimal solution to the dual (max, $\leq$ ) problem is $\left(y_{1}, y_{2}, y_{3}\right)=(0,0,1)$.
$\square$ The optimal solution to the original (min, $\geq$ ) problem is $\left(x_{1}, x_{2}\right)=(3,0)$.

- The optimal values of the objective functions are:
$\operatorname{Max} P=\operatorname{Min} C=3$
- Do Questions 1-4, Example Sheet 4.
- Look at (no need to do unless you want to) the application problems at the end of Sections 5-5, 5-6 and Review, to get an idea of some applications of LP.

Do Example 3.5 graphically to check the answer.

