
Unit 1 

Lesson 8: Special cases of LPP 

Learning outcomes 

 

SolvingSpecial cases of Linear Programming Problem using Simplex Method : 

• Alternate Optimal Solutions. 
• Degeneracy. 
• Unboudedness. 
• Infeasibility. 

 

In the previous lecture we have learnt  how to solve a linear program using simplex 
method. Properties of Linear Programs  

There are three possible outcomes for a linear program: it is infeasible, it has an 
unbounded optimum or it has an optimal solution.  

If there is an optimal solution, there is a basic optimal solution. Remember that the 
number of basic variables in a basic solution is equal to the number of constraints of the 
problem, say m. So, even if the total number of variables, say n, is greater than m, at most 
m of these variables can have a positive value in an optimal basic solution.  

Today in this lecture we will study about Alternate Optimal Solutions, Degeneracy, 
Unboudedness, Infeasibility 

 Alternate Optimal Solutions  

Let us solve a small example: 

Example1 

 

As before, we add slacks and , and we solve by the simplex method, using tableau 
representation.  



 

Now Rule 1 shows that this is an optimal solution. Interestingly, the coefficient of the 
nonbasic variable in Row 0 happens to be equal to 0. Going back to the rationale that 
allowed us to derive Rule 1, we observe that, if we increase (from its current value of 
0), this will not effect the value of z. Increasing produces changes in the other 
variables, of course, through the equations in Rows 1 and 2. In fact, we can use Rule 2 
and pivot to get a different basic solution with the same objective value z=2.  

 

Note that the coefficient of the nonbasic variable in Row 0 is equal to 0. Using as 
entering variable and pivoting, we would recover the previous solution!  

 Degeneracy  

Example2 

    Max Z = 2 x1  + x2 

     3 x1  +  x2  ≤ 6 

        x1  -   x2  ≤    2 

                  x2  ≤    3 

x1 ≥ 0  ,  x2  ≥ 0 

 

Let us solve this problem using the -by now familiar- simplex method. In the initial 
tableau, we can choose as the entering variable (Rule 1) and Row 2 as the pivot row 



(the minimum ratio in Rule 2 is a tie, and ties are broken arbitrarily). We pivot and this 
yields the second tableau below.  

 

Note that this basic solution has a basic variable (namely ) which is equal to zero. 
When this occurs, we say that the basic solution is degenerate. Should this be of concern? 
Let us continue the steps of the simplex method. Rule 1 indicates that is the entering 

variable. Now let us apply Rule 2. The ratios to consider are in Row 1 and in Row 3. 
The minimum ratio occurs in Row 1, so let us perform the corresponding pivot.  

 

We get exactly the same solution! The only difference is that we have interchanged the 
names of a nonbasic variable with that of a degenerate basic variable ( and ). Rule 1 
tells us the solution is not optimal, so let us continue the steps of the simplex method. 
Variable is the entering variable and the last row wins the minimum ratio test. After 
pivoting, we get the tableau:  

 

By Rule 1, this is the optimal solution. So, after all, degeneracy did not prevent the 
simplex method to find the optimal solution in this example. It just slowed things down a 
little. Unfortunately, on other examples, degeneracy may lead to cycling, i.e. a sequence 



of pivots that goes through the same tableaus and repeats itself indefinitely. In theory, 
cycling can be avoided by choosing the entering variable with smallest index in Rule 1, 
among all those with a negative coefficient in Row 0, and by breaking ties in the 
minimum ratio test by choosing the leaving variable with smallest index (this is known as 
Bland's rule). This rule, although it guaranties that cycling will never occur, turns out to 
be somewhat inefficient. Actually, in commercial codes, no effort is made to avoid 
cycling. This may come as a surprise, since degeneracy is a frequent occurence. But there 
are two reasons for this:  

• Although degeneracy is frequent, cycling is extremely rare.  
• The precision of computer arithmetic takes care of cycling by itself: round off 

errors accumulate and eventually gets the method out of cycling.  

Our example of degeneracy is a 2-variable problem, so you might want to draw the 
constraint set in the plane and interpret degeneracy graphically.  

 Unbounded Optimum  

 Example 3  Max Z = 2 x1  + x2 

                          s.t          -x1  +  x2  ≤  1 

                                     x1  -  2 x2  ≤  2 

                           x1 ≥ 0  ,  x2  ≥ 0 

 

Solving by the simplex method, we get:  

 

At this stage, Rule 1 chooses as the entering variable, but there is no ratio to compute, 
since there is no positive entry in the column of . As we start increasing , the value of 
z increases (from Row 0) and the values of the basic variables increase as well (from 
Rows 1 and 2). There is nothing to stop them going off to infinity. So the problem is 
unbounded.  



So you have seen how the special cases are solved. 
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